Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans.

نویسندگان

  • Jung-Mi Kim
  • Cui Jing Tracy Zeng
  • Tania Nayak
  • Rongzhong Shao
  • An-Chi Huang
  • Berl R Oakley
  • Bo Liu
چکیده

In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization of the SIN proteins of SIDB and MOBA to the SPB. Another scaffold protein SEPK, whose localization at the SPB was dependent on SNAD, was also required for SIDB and MOBA localization to the SPB. In the absence of either SEPK or SNAD, SIDB/MOBA successfully localized to the septation site, indicating that their earlier localization at SPB was not essential for their later appearance at the division site. Unlike their functional counterparts in fission yeast, SEPK and SNAD were not required for vegetative growth but only for timely septation. Furthermore, down-regulation of negative regulators of the SIN suppressed the septation and conidiation phenotypes due to the loss of SNAD. Therefore, we conclude that SPB localization of SIN components is not essential for septation per se, but critical for septation to take place in a timely manner in A. nidulans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding...

متن کامل

Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans.

The kinase cascade of the septation initiation network (SIN), first revealed in fission yeast, activates the contraction of the actomyosin ring, and plays an essential role in fungal septation. Mob1p, an evolutionarily conserved SIN protein, is associated with the most downstream kinase of this cascade in fission yeast. In this study, the mobA gene encoding a homologous protein was isolated fro...

متن کامل

Phospho-Regulation of the Neurospora crassa Septation Initiation Network

Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservatio...

متن کامل

Regulation of Septum Formation by the Bud3â•fiRho4GTPase Module in Aspergillus nidulans

The ability of fungi to generate polarized cells with a variety of shapes likely reflects precise temporal and spatial control over the formation of polarity axes. The bud site selection system of Saccharomyces cerevisiae represents the best-understood example of such a morphogenetic regulatory system. However, the extent to which this system is conserved in the highly polarized filamentous fun...

متن کامل

Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans.

The ability of fungi to generate polarized cells with a variety of shapes likely reflects precise temporal and spatial control over the formation of polarity axes. The bud site selection system of Saccharomyces cerevisiae represents the best-understood example of such a morphogenetic regulatory system. However, the extent to which this system is conserved in the highly polarized filamentous fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2009